Canopy Solar-Induced Chlorophyll Fluorescence and Its Link to Transpiration in a Temperate Evergreen Needleleaf Forest during the Fall Transition

Author:

Cong WeiweiORCID,Yang Kaijie,Wang Feng

Abstract

Northern hemisphere evergreen needleleaf forest (ENF) contributes a significant fraction of global water exchange but regional transpiration (T) observation in ENF ecosystems is still challenging. Traditional remote sensing techniques and terrestrial biosphere models reproduce the transpiration seasonality with difficulty, and with large uncertainties. Solar-induced chlorophyll fluorescence (SIF) emission from vegetation correlates to photosynthesis at multiple spatial and temporal scales. However, how SIF links to transpiration of evergreen forest during seasonal transition is unclear. Here, we explored the relationship between canopy SIF and T retrieved from ground observation towers in ENF. We also examined the role of meteorological and soil factors on the relationship between SIF and T. A slow decrease of SIF and T with a fast reduction in photosynthetically active radiation (PAR), air temperature, vapor pressure deficit (VPD), soil temperature and soil water content (SWC) were found in the ENF during the fall transition. The correlation between SIF and T at hourly and daily scales varied significantly among different months (Pearson correlation coefficient = 0.29–0.68, p < 0.01). SIF and T were significantly linearly correlated at hourly (R2 = 0.53, p < 0.001) and daily (R2 = 0.67, p < 0.001) timescales in the October. Air temperature and PAR were the major moderating factors for the relationship between SIF and T in the fall transition. Soil water content (SWC) influenced the SIF-T relationship at an hourly scale. Soil temperature and VPD’s effect on the SIF-T relationship was evident at a daily scale. This study can help extend the possibility of constraining ecosystem T by SIF at an unprecedented spatiotemporal resolution during season transitions.

Funder

Fundamental Research Funds of Chinese Academy of Forestry

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3