Smaller and Isolated Grassland Fragments Are Exposed to Stronger Seed and Insect Predation in Habitat Edges

Author:

Kuli-Révész Kitti,Korányi Dávid,Lakatos Tamás,Szabó Ágota Réka,Batáry Péter,Gallé Róbert

Abstract

Habitat fragmentation threatens terrestrial arthropod biodiversity, and thereby also leads to alterations of ecosystem functioning and stability. Predation on insects and seeds by arthropods are two very important ecological functions because of their community-structuring effects. We addressed the effect of fragment connectivity, fragment size, and edge effect on insect and seed predation of arthropods. We studied 60 natural fragments of two grassland ecosystems in the same region (Hungarian Great Plain), 30 forest-steppes, and 30 burial mounds (kurgans). The size of fragments were in the range of 0.16–6.88 ha for forest-steppe and 0.01–0.44 ha for kurgan. We used 2400 sentinel arthropod preys (dummy caterpillars) and 4800 seeds in trays for the measurements. Attack marks on dummy caterpillars were used for predator identification and calculation of insect predation rates. In the case of seeds, predation rates were calculated as the number of missing or damaged seeds per total number of exposed seeds. Increasing connectivity played a role only in generally small kurgans, with a negative effect on insect and seed predation rates in the edges. In contrast, fragment size moderated edge effects on insect and seed predation rates in generally large forest-steppes. The difference between edges and centres was more pronounced in small than in large fragments. Our study emphasizes the important role of landscape and fragment-scale factors interacting with edge effect in shaping ecosystem functions in natural grassland fragments of modified landscapes. Managing functional landscapes to optimize the assessment of ecosystem functions and services needs a multispatial scale approach.

Funder

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

MDPI AG

Subject

Forestry

Reference73 articles.

1. Scientists' warning to humanity on insect extinctions

2. Long-term large-scale decline in relative abundances of butterfly and burnet moth species across south-western Germany

3. Landscape modification and habitat fragmentation: a synthesis

4. The Theory of Island Biogeography;MacArthur,1967

5. Beyond island biogeography theory: Understanding habitat fragmentation in the real world;Laurance,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3