How Do Plants Respond Biochemically to Fire? The Role of Photosynthetic Pigments and Secondary Metabolites in the Post-Fire Resprouting Response

Author:

Santacruz-García Ana CarolinaORCID,Bravo Sandra,del Corro Florencia,García Elisa Mariana,Molina-Terrén Domingo M.,Nazareno Mónica Azucena

Abstract

Resprouting is one of the main regeneration strategies in woody plants that allows post-fire vegetation recovery. However, the stress produced by fires promotes the biosynthesis of compounds which could affect the post-fire resprouting, and this approach has been poorly evaluated in fire ecology. In this study, we evaluate the changes in the concentration of chlorophylls, carotenoids, phenolic compounds, and tannins as a result of experimental burns (EB). We asked whether this biochemical response to fire could influence the resprouting responses. For that, we conducted three EB in three successive years in three different experimental units. Specifically, we selected six woody species from the Chaco region, and we analyzed their biochemical responses to EB. We used spectrophotometric methods to quantify the metabolites, and morphological variables to estimate the resprouting responses. Applying a multivariate analysis, we built an index to estimate the biochemical response to fire to EB per each species. Our results demonstrate that photosynthetic pigment concentration did not vary significantly in burnt plants that resprout in response to EB, whereas concentrations of secondary metabolites (phenolic compounds and tannins) increased up to two years after EB. Our main results showed that phenolic compounds could play a significant role in the resprouting responses, while photosynthetic pigments seem to have a minor but significant role. Such results were reaffirmed by the significant correlation between the biochemical response to fire and both resprouting capacity and resprouting growth. However, we observed that the biochemical response effect on resprouting was lower in tree species than in shrubby species. Our study contributes to the understanding of the biochemical responses that are involved in the post-fire vegetation recovery.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3