UWV-Yolox: A Deep Learning Model for Underwater Video Object Detection

Author:

Pan Haixia1,Lan Jiahua1,Wang Hongqiang1ORCID,Li Yanan1,Zhang Meng1,Ma Mojie1,Zhang Dongdong1,Zhao Xiaoran1

Affiliation:

1. School of Software, Beihang University, Beijing 100191, China

Abstract

Underwater video object detection is a challenging task due to the poor quality of underwater videos, including blurriness and low contrast. In recent years, Yolo series models have been widely applied to underwater video object detection. However, these models perform poorly for blurry and low-contrast underwater videos. Additionally, they fail to account for the contextual relationships between the frame-level results. To address these challenges, we propose a video object detection model named UWV-Yolox. First, the Contrast Limited Adaptive Histogram Equalization method is used to augment the underwater videos. Then, a new CSP_CA module is proposed by adding Coordinate Attention to the backbone of the model to augment the representations of objects of interest. Next, a new loss function is proposed, including regression and jitter loss. Finally, a frame-level optimization module is proposed to optimize the detection results by utilizing the relationship between neighboring frames in videos, improving the video detection performance. To evaluate the performance of our model, We construct experiments on the UVODD dataset built in the paper, and select mAP@0.5 as the evaluation metric. The mAP@0.5 of the UWV-Yolox model reaches 89.0%, which is 3.2% better than the original Yolox model. Furthermore, compared with other object detection models, the UWV-Yolox model has more stable predictions for objects, and our improvements can be flexibly applied to other models.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3