Automatic Identification of Ultrasound Images of the Tibial Nerve in Different Ankle Positions Using Deep Learning

Author:

Kawanishi Kengo12ORCID,Kakimoto Akihiro13ORCID,Anegawa Keisuke4,Tsutsumi Masahiro15ORCID,Yamaguchi Isao13ORCID,Kudo Shintarou156ORCID

Affiliation:

1. Inclusive Medical Science Research Institute, Morinomiya University of Medical Sciences, Osaka 559-8611, Japan

2. Department of Rehabilitation, Kano General Hospital, Osaka 531-0041, Japan

3. Department of Radiological Sciences, Faculty of Health Sciences, Morinomiya University of Medical Sciences, Osaka 559-8611, Japan

4. Graduate School of Health Science, Morinomiya University of Medical Sciences, Osaka 559-8611, Japan

5. Department of Physical Therapy, Morinomiya University of Medical Sciences, Osaka 559-8611, Japan

6. AR-Ex Medical Research Center, Tokyo 158-0082, Japan

Abstract

Peripheral nerve tension is known to be related to the pathophysiology of neuropathy; however, assessing this tension is difficult in a clinical setting. In this study, we aimed to develop a deep learning algorithm for the automatic assessment of tibial nerve tension using B-mode ultrasound imaging. To develop the algorithm, we used 204 ultrasound images of the tibial nerve in three positions: the maximum dorsiflexion position and −10° and −20° plantar flexion from maximum dorsiflexion. The images were taken of 68 healthy volunteers who did not have any abnormalities in the lower limbs at the time of testing. The tibial nerve was manually segmented in all images, and 163 cases were automatically extracted as the training dataset using U-Net. Additionally, convolutional neural network (CNN)-based classification was performed to determine each ankle position. The automatic classification was validated using five-fold cross-validation from the testing data composed of 41 data points. The highest mean accuracy (0.92) was achieved using manual segmentation. The mean accuracy of the full auto-classification of the tibial nerve at each ankle position was more than 0.77 using five-fold cross-validation. Thus, the tension of the tibial nerve can be accurately assessed with different dorsiflexion angles using an ultrasound imaging analysis with U-Net and a CNN.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3