Vision-Based Automated Recognition and 3D Localization Framework for Tower Cranes Using Far-Field Cameras

Author:

Wang Jiyao1ORCID,Zhang Qilin1,Yang Bin1ORCID,Zhang Binghan1ORCID

Affiliation:

1. Department of Structural Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China

Abstract

Tower cranes can cover most of the area of a construction site, which brings significant safety risks, including potential collisions with other entities. To address these issues, it is necessary to obtain accurate and real-time information on the orientation and location of tower cranes and hooks. As a non-invasive sensing method, computer vision-based (CVB) technology is widely applied on construction sites for object detection and three-dimensional (3D) localization. However, most existing methods mainly address the localization on the construction ground plane or rely on specific viewpoints and positions. To address these issues, this study proposes a framework for the real-time recognition and localization of tower cranes and hooks using monocular far-field cameras. The framework consists of four steps: far-field camera autocalibration using feature matching and horizon-line detection, deep learning-based segmentation of tower cranes, geometric feature reconstruction of tower cranes, and 3D localization estimation. The pose estimation of tower cranes using monocular far-field cameras with arbitrary views is the main contribution of this paper. To evaluate the proposed framework, a series of comprehensive experiments were conducted on construction sites in different scenarios and compared with ground-truth data obtained by sensors. The experimental results show that the proposed framework achieves high precision in both crane jib orientation estimation and hook position estimation, thereby contributing to the development of safety management and productivity analysis.

Funder

Shanghai Science and Technology Commission

Social Development Science and Technology Research Project of “Science and Technology Innovation Action Plan”

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3