Author:
Joo Ji-Eun,Lee Myung-Jae,Park Sung Min
Abstract
This paper presents an optoelectronic receiver (Rx) IC with an on-chip avalanche photodiode (APD) realized in a 0.18-μm CMOS process for the applications of home-monitoring light detection and ranging (LiDAR) sensors, where the on-chip CMOS P+/N-well APD was implemented to avoid the unwanted signal distortion from bondwires and electro-static discharge (ESD) protection diodes. Various circuit techniques are exploited in this work, such as the feedforward transimpedance amplifier for high gain, and a limiting amplifier with negative impedance compensation for wide bandwidth. Measured results demonstrate 93.4-dBΩ transimpedance gain, 790-MHz bandwidth, 12-pA/√Hz noise current spectral density, 6.74-μApp minimum detectable signal that corresponds to the maximum detection range of 10 m, and 56.5-mW power dissipation from a 1.8-V supply. This optoelectronic Rx IC provides a potential for a low-cost low-power solution in the applications of home-monitoring LiDAR sensors.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献