Emitter Identification of Digital Modulation Transmitter Based on Nonlinearity and Modulation Distortion of Power Amplifier

Author:

Chen Yue,Chen Xiang,Lei Yingke

Abstract

Specific transmitter identification (SEI) is a technology that uses a received signal to identify to which individual radiation source the transmitted signal belongs. It can complete the identification of the signal transmitter in a non-cooperative scenario. Therefore, there are broad application prospects in the field of wireless-communication-network security, spectral resource management, and military battlefield-target communication countermeasures. This article demodulates and reconstructs a digital modulation signal to obtain a signal without modulator distortion and power-amplifier nonlinearity. Comparing the reconstructed signal with the actual received signal, the coefficient representation of the nonlinearity of the power amplifier and the distortion of the modulator can be obtained, and these coefficients can be used as the fingerprint characteristics of different transmitters through a convolutional neural network (CNN) to complete the identification of specific transmitters. The existing SEI strategy for changing the modulation parameters of a test signal is to mix part of the test signal with the training signal so that the classifier can learn the signal of which the modulation parameter was changed. This method is still data-oriented and cannot process signals for which the classifier has not been trained. It has certain limitations in practical applications. We compared the fingerprint features extracted by the method in this study with the fingerprint features extracted by the bispectral method. When SNR < 20 dB, the recognition accuracy of the bispectral method dropped rapidly. The method in this paper still achieved 86% recognition accuracy when SNR = 0 dB. When the carrier frequency of the test signal was changed, the bispectral feature failed, and the proposed method could still achieve a recognition accuracy of about 70%. When changing the test-signal baud rate, the proposed method could still achieve a classification accuracy rate of more than 70% for four different individual radiation sources when SNR = 0 dB.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3