Preparation of Titania–Silica Composite Aerogel at Atmospheric Pressure and Its Catalytic Performance in the Synthesis of Poly (Butylene Succinate)

Author:

Zou Wenqi12,Bian Hongli1,Guo Jinjing1,Xu Jun1ORCID,Guo Baohua1

Affiliation:

1. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

2. Beijing Center for Physical and Chemical Analysis, Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing 100089, China

Abstract

Titanates are widely used in the synthesis of polyesters, such as Poly (butylene succinate) (PBS), due to their excellent catalytic activity for polycondensation. However, the hydrolysis sensitivity of titanate and side reactions at high temperatures restrict the further improvement of the molecular weight of polyesters and lead to the high content of end carboxyl group content in the products. In this work, we prepared titania–silica composite aerogels with resistance to hydrolysis and large specific surface area, which were further explored as an efficient catalyst for polycondensation reactions. A series of titania–silica composite aerogel catalysts for PBS polycondensation were successfully prepared by the sol-gel method. The influence of a Ti/Si ratio on the surface morphology and structure of the aerogels was examined. Titania–silica composite aerogel exhibits the surface characteristics of high specific surface area and high Lewis acid content. The specific surface area of titania–silica composite aerogels can reach 524.59 m2/g, and the Lewis acid content on the surface can reach 370.29 μmol/g. Furthermore, the catalytic performance for the polycondensation reaction of PBS was investigated. The intrinsic viscosity of PBS synthesized by catalysis with the composite catalyst with a Ti/Si ratio of 9/1 reaches 1.74 dL/g, with the Mn of 7.72 × 104 g/mol. The hydrolysis resistance stability of the titania–silica composite aerogel is greatly improved compared with traditional tetrabutyl titanate (TBT), and the end carboxyl group content of PBS is effectively reduced to lower than 30 mol/ton.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3