In-Bulk Temperature Profile Mapping Using Fiber Bragg Grating in Fluids

Author:

Su Sylvie1ORCID,Niu Tianyi12ORCID,Vogt Tobias1ORCID,Eckert Sven1ORCID

Affiliation:

1. Helmholtz-Zentrum Dresden–Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany

2. Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062 Dresden, Germany

Abstract

The capabilities of Fiber Bragg Grating (FBG) sensors to measure temperature variations in the bulk of liquid flows were considered. In the first step of our research project, reported in this paper, we investigated to what extent the use of thin glass fibers without encapsulation, which only minimally disturb a flow, can fulfill the requirements for robustness and measurement accuracy. Experimental tests were performed in a benchmark setup containing 24 FBG measuring positions, which were instrumented in parallel with thermocouples for validation. We suggest a special assembly procedure in which the fiber is placed under a defined tension to improve its stiffness and immobility for certain flow conditions. This approach uses a single FBG sensor as a reference that measures the strain effect in real time, allowing accurate relative temperature measurements to be made at the other FBG sensor points, taking into account an appropriate correction term. Absolute temperature readings can be obtained by installing another well-calibrated, strain-independent thermometer on the reference FBG. We demonstrated this method in two test cases: (i) a temperature gradient with stable density stratification in the liquid metal GaInSn and (ii) the heating of a water column using a local heat source. In these measurements, we succeeded in recording both spatial and temporal changes in the linear temperature distribution along the fiber. We present the corresponding results from the tests and, against this background, we discuss the capabilities and limitations of this measurement technique with respect to the detection of temperature fields in liquid flows.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3