A New Method of Obtaining Water from Water Storage Tanks in a Crisis Situation Using Renewable Energy

Author:

Szpak Dawid1ORCID,Tchórzewska-Cieślak Barbara1ORCID,Stręk Magdalena1ORCID

Affiliation:

1. Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland

Abstract

Background: During a crisis situation, water supply systems stop functioning properly. It is necessary to obtain water from sources other than basic ones (reserve water intakes, water storage tanks, bottled water). Methods: We aim to determine the water demand in a crisis situation based on current European guidelines and determine the time to cover the demand for water from water storage tanks during a crisis situation. Results: An installation for drawing water from a water storage tank, which includes water disinfection using a UV lamp, is necessary. Continuity of operation is guaranteed by the use of a photovoltaic installation independent of the power grid. The amount of water stored in water storage tanks is enough to meet the basic needs of the population for up to several weeks. Conclusions: The use of a UV lamp with an independent backup power supply allows maintaining the microbiological purity of water during a long-term crisis situation.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3