Identification of Distribution Network Topology and Line Parameter Based on Smart Meter Measurements

Author:

Wang Chong1,Lou Zheng1,Li Ming2,Zhu Chaoyang3,Jing Dongsheng3

Affiliation:

1. Information and Communication Branch, State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210024, China

2. School of Electrical Engineering, Southeast University, Nanjing 210096, China

3. State Grid Suzhou Power Supply Company, Suzhou 215004, China

Abstract

Accurate line parameters are the basis for the optimal control and safety analysis of distribution networks. The lack of real-time monitoring equipment in grids has meant that data-driven identification methods have become the main tool to estimate line parameters. However, frequent network reconfigurations increase the uncertainty of distribution network topologies, creating challenges in the data-driven identification of line parameters. In this paper, a line parameter identification method compatible with an uncertain topology is proposed, which simplifies the model complexity of the joint identification of topology and line parameters by removing the unconnected branches through noise reduction. In order to improve the solving accuracy and efficiency of the identification model, a two-stage identification method is proposed. First, the initial values of the topology and line parameters are quickly obtained using a linear power flow model. Then, the identification results are modified iteratively based on the classical power flow model to achieve a more accurate estimation of the grid topology and line parameters. Finally, a simulation analysis based on IEEE 33- and 118-bus distribution systems demonstrated that the proposed method can effectively realize the estimation of topology and line parameters, and is robust with regard to both measurement errors and grid structures.

Funder

Research on Key Technologies for Constructing the ‘Integrated Map of Operation and Distribution’ Based on Multi-source Data Fusion

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3