Pore Structure Characteristics of Shale Oil Reservoirs with Different Lithofacies and Their Effects on Mobility of Movable Fluids: A Case Study of the Chang 7 Member in the Ordos Basin, China

Author:

Xiao Yufang123ORCID,Ye Zhengqin4,Wang Hongliang123ORCID,Yang Hailong4,Mu Nana123,Ji Xinyuan5,Zhao He123

Affiliation:

1. School of Energy Resources, China University of Geosciences, Beijing 100083, China

2. Key Laboratory for Marine Reservoir Evolution and Hydrocarbon Abundance Mechanism, Ministry of Education, China University of Geosciences, Beijing 100083, China

3. Beijing Key Laboratory of Unconventional Natural Gas Geological Evaluation and Development Engineering, China University of Geosciences, Beijing 100083, China

4. Yanchang Oilfield Co., Ltd., Yan’an 716000, China

5. China National Offshore Oil Corporation Limited, Tianjin Branch, Tianjin 300459, China

Abstract

The Chang 7 member of the Triassic Yanchang Formation in the Ordos Basin is a significant continent shale oil reservoir in China. Therefore, conducting an in-depth investigation into the pore structure and fluid mobility characteristics of the Chang 7 shale oil reservoir holds immense importance for advancing shale oil exploration. This study conducts a detailed analysis of the pore structures and their impact on fluid mobility of the Chang 7 shale oil reservoir using multiple methodologies, i.e., a cast thin section, scanning electron microscopy (SEM), X-ray diffraction (XRD), high-pressure mercury injection (HPMI), low-temperature nitrogen adsorption (LTNA), and nuclear magnetic resonance (NMR). The results show that the sandstone in the Yanwumao area of the Chang 7 shale oil reservoir consists mainly of lithic arkose and feldspathic litharenite, which can be classified into three lithofacies (massive fine-grained sandstone (Sfm), silt-fine sandstone with graded bedding (Sfgb), and silt-fine sandstone with parallel bedding (Sfp)). Moreover, three pore structures (Type I, II, and III), and four pore spaces (nanopores, micropores, mesopores, and macropores) can be characterized. Pore structure Type I, characterized by large pores, exhibits bimodal pore diameter curves, resulting in the highest levels of movable fluid saturation (MFS) and movable fluid porosity (MFP). Pore structure Type II demonstrates unimodal pore structures, indicating robust connectivity, and higher MFS and MFP. Pore structure Type III primarily consists of dissolved and intercrystalline pores with smaller pore radii, a weaker pore configuration relationship, and the least fluid mobility. Furthermore, a correlation analysis suggests that the pore structure significantly impacts the fluid flowability in the reservoir. Favorable petrophysical properties and large pores enhance fluid flowability. Micropores and mesopores with high fractal dimensions have a greater impact on reservoir fluid mobility compared to macropores and nanopores. Mesopores mainly control MFS and MFP, while micropores govern the shift from bound fluid to movable fluid states. Among the lithofacies types, the Sfm lithofacies exhibit the highest fluid mobility due to their significant proportion of macropores and mesopores, whereas the Sfgb lithofacies have lower values because they contain an abundance of micropores. The Sfp lithofacies also dominate macropores and mesopores, resulting in medium fluid mobility levels. This study combines lithofacies types, micro-reservoir pore structure characteristics, and mobile fluid occurrence characteristics to better understand the dominant reservoir distribution characteristics of the Chang 7 shale oil reservoirs in the Ordos Basin and provide theoretical information for further optimization of production strategies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference58 articles.

1. Development Characteristics and Orientation of Tight Oil and Gas in China;Sun;Pet. Explor. Dev.,2019

2. Micro-Pore Structure and Fluid Mobility of Tight Sandstone Reservoirs of Chang 8 Member in Huachi Area in Ordos Basin;Pang;Pet. Geol. Oilfield Dev. Daqing,2023

3. Effects of Clay Minerals and Organic Matter on Pore Evolution of the Early Mature Lacustrine Shale in the Ordos Basin, Chi-Na;Wang;J. Asian Earth Sci.,2022

4. Discovery and Resource Potential of Shale Oil of Chang 7 Member, Triassic Yanchang Formation, Ordos Basin;Fu;China Pet. Explor.,2021

5. The Geological Characteristics and the Progress on Exploration and Development of Shale Oil in Chang7 Member of Mesozoic Yanchang Formation, Ordos Basin;Fu;China Pet. Explor.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3