Abstract
This paper presents a new approach based on the optimization of the blade pitching strategy of offshore wind turbines in order to maximize the global energy output considering the Gaussian wake model and including the effect of added turbulence. A genetic algorithm is proposed as an optimization tool in the process of finding the optimal setting of the wind turbines, which aims to determine the individual pitch of each turbine so that the overall losses due to the wake effect are minimised. The integration of the Gaussian model, including the added turbulence effect, for the evaluation of the wakes provides a step forward in the development of strategies for optimal operation of offshore wind farms, as it is one of the state-of-the-art analytical wake models that allow the evaluation of the energy output of the project in a more reliable way. The proposed methodology has been tested through the execution of a set of test cases that show the ability of the proposed tool to maximize the energy production of offshore wind farms, as well as highlights the importance of considering the effect of added turbulence in the evaluation of the wake.
Funder
Centro para el Desarrollo Tecnológico Industrial
European Commission
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献