Evaluating the Use of Displacement Ventilation for Providing Space Heating in Unoccupied Periods Using Laboratory Experiments, Field Tests and Numerical Simulations

Author:

Javed SaqibORCID,Ørnes Ivar Rognhaug,Dokka Tor Helge,Myrup Maria,Holøs Sverre BjørnORCID

Abstract

Displacement ventilation is a proven method of providing conditioned air to enclosed spaces with the aim to deliver good air quality and thermal comfort while reducing the amount of energy required to operate the system. Until now, the practical applications of displacement ventilation have been exclusive to providing ventilation and cooling to large open spaces with high ceilings. The provision of heating through displacement ventilation has traditionally been discouraged, out of concern that warm air supplied at the floor level would rise straight to the ceiling level without providing heat to the occupied space. Hence, a separate heating system is regularly integrated with the displacement ventilation in cold climates, increasing the cost and energy use of the system. This paper goes beyond the common industry practice and explores the possibility of using displacement ventilation to provide heating without any additional heating system. It reports on experimental investigations conducted in laboratory and field settings, and numerical simulation of these studies, all aimed at investigating the application of displacement ventilation for providing a comfortable indoor environment in winter by preheating the space prior to occupancy. The experimental results confirm that the proposed concept of providing space heating in unoccupied periods without a separate heating system is possible with displacement ventilation.

Funder

Norges Forskningsråd

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3