Revisiting Adaptive Frequency Hopping Map Prediction in Bluetooth with Machine Learning Classifiers

Author:

Lee JanggoonORCID,Park ChanheeORCID,Roh HeejunORCID

Abstract

Thanks to the frequency hopping nature of Bluetooth, sniffing Bluetooth traffic with low-cost devices has been considered as a challenging problem. To this end, BlueEar, a state-of-the-art low-cost sniffing system with two Bluetooth radios proposes a set of novel machine learning-based subchannel classification techniques for adaptive frequency hopping (AFH) map prediction by collecting packet statistics and spectrum sensing. However, there is no explicit evaluation results on the accuracy of BlueEar’s AFH map prediction. To this end, in this paper, we revisit the spectrum sensing-based classifier, one of the subchannel classification techniques in BlueEar. At first, we build an independent implementation of the spectrum sensing-based classifier with one Ubertooth sniffing radio. Using the implementation, we conduct a subchannel classification experiment with several machine learning classifiers where spectrum features are utilized. Our results show that higher accuracy can be achieved by choosing an appropriate machine learning classifier and training the classifier with actual AFH maps.Our results show that higher accuracy can be achieved by choosing an appropriate machine learning classifier and training the classifier with actual AFH maps.

Funder

Korea University

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference28 articles.

1. Bluetooth Market Update 2020,2020

2. Taming the Blue Beast: A Survey of Bluetooth Based Threats

3. Security Vulnerabilities in Bluetooth Technology as Used in IoT

4. Bluetooth Adaptive Frequency Hopping on a R&S CMW,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3