Abstract
Preformed coils are used in electrical machines to improve the copper slot fill factor. A higher utilization of the machine can be realized. The improvement is a result of both, low copper losses due to the increased slot fill factor and an improved heat transition out of the slot. In this study, the influence of these two aspects on the operational improvement of the machine is studied. Detailed simulation models allow a separation of the two effects. A preform wound winding in comparison to a round wire winding is studied. Full machine prototypes as well as motorettes of the two designs are built up. Thermal finite element models of the stator slot are developed and parameterized with the help of motorette microsections. The resulting thermal lumped parameter model is enlarged to represent the entire electric machine. Electromagnetic finite element models for loss calculation and the thermal lumped parameter models are parameterized using test bench measurements. The developed models show very good agreement in comparison to the test bench evaluation. The study indicates that both, the improvements in the heat transition path and the advantages of the reduced losses in the slot contribute to the improved operational range in dependency of the studied operational point.
Funder
Bundesministerium für Bildung und Forschung
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献