Adaptive Fuzzy Approximation Control of PV Grid-Connected Inverters

Author:

Shadoul Myada,Yousef HassanORCID,Al Abri Rashid,Al-Hinai AmerORCID

Abstract

Three-phase inverters are widely used in grid-connected renewable energy systems. This paper presents a new control methodology for grid-connected inverters using an adaptive fuzzy control (AFC) technique. The implementation of the proposed controller does not need prior knowledge of the system mathematical model. The capabilities of the fuzzy system in approximating the nonlinear functions of the grid-connected inverter system are exploited to design the controller. The proposed controller is capable to achieve the control objectives in the presence of both parametric and modelling uncertainties. The control objectives are to regulate the grid power factor and the dc output voltage of the photovoltaic systems. The closed-loop system stability and the updating laws of the controller parameters are determined via Lyapunov analysis. The proposed controller is simulated under different system disturbances, parameters, and modelling uncertainties to validate the effectiveness of the designed controller. For evaluation, the proposed controller is compared with conventional proportional-integral (PI) controller and Takagi–Sugeno–Kang-type probabilistic fuzzy neural network controller (TSKPFNN). The results demonstrated that the proposed AFC showed better performance in terms of response and reduced fluctuations compared to conventional PI controllers and TSKPFNN controllers.

Funder

Sultan Qaboos University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3