Estimating Lower Extremity Running Gait Kinematics with a Single Accelerometer: A Deep Learning Approach

Author:

Gholami Mohsen,Napier ChristopherORCID,Menon CarloORCID

Abstract

Abnormal running kinematics are associated with an increased incidence of lower extremity injuries among runners. Accurate and unobtrusive running kinematic measurement plays an important role in the detection of gait abnormalities and the prevention of injuries among runners. Inertial-based methods have been proposed to address this need. However, previous methods require cumbersome sensor setup or participant-specific calibration. This study aims to validate a shoe-mounted accelerometer for sagittal plane lower extremity angle measurement during running based on a deep learning approach. A convolutional neural network (CNN) architecture was selected as the regression model to generalize in inter-participant scenarios and to minimize poorly estimated joints. Motion and accelerometer data were recorded from ten participants while running on a treadmill at five different speeds. The reference joint angles were measured by an optical motion capture system. The CNN model predictions deviated from the reference angles with a root mean squared error (RMSE) of less than 3.5° and 6.5° in intra- and inter-participant scenarios, respectively. Moreover, we provide an estimation of six important gait events with a mean absolute error of less than 2.5° and 6.5° in intra- and inter-participants scenarios, respectively. This study highlights an appealing minimal sensor setup approach for gait analysis purposes.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Institutes of Health Research

Canada Research Chairs

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3