Bio-Inspired Machine Learning Approach to Type 2 Diabetes Detection

Author:

Al-Tawil Marwan1ORCID,Mahafzah Basel A.23ORCID,Al Tawil Arar4ORCID,Aljarah Ibrahim5ORCID

Affiliation:

1. Department of Computer Information Systems, King Abdullah II School of Information Technology, The University of Jordan, Amman 11942, Jordan

2. Department of Computer Science, King Abdullah II School of Information Technology, The University of Jordan, Amman 11942, Jordan

3. Department of Computer Science, King Hussein School of Computing Sciences, Princess Sumaya University for Technology, Amman 11941, Jordan

4. Abdul Aziz Al Ghurair School of Advanced Computing, Luminus Technical University College, Amman 11118, Jordan

5. Department of Artificial Intelligence, King Abdullah II School of Information Technology, The University of Jordan, Amman 11942, Jordan

Abstract

Type 2 diabetes is a common life-changing disease that has been growing rapidly in recent years. According to the World Health Organization, approximately 90% of patients with diabetes worldwide have type 2 diabetes. Although there is no permanent cure for type 2 diabetes, this disease needs to be detected at an early stage to provide prognostic support to allied health professionals and develop an effective prevention plan. This can be accomplished by analyzing medical datasets using data mining and machine-learning techniques. Due to their efficiency, metaheuristic algorithms are now utilized in medical datasets for detecting chronic diseases, with better results than traditional methods. The main goal is to improve the performance of the existing approaches for the detection of type 2 diabetes. A bio-inspired metaheuristic algorithm called cuttlefish was used to select the essential features in the medical data preprocessing stage. The performance of the proposed approach was compared to that of a well-known bio-inspired metaheuristic feature selection algorithm called the genetic algorithm. The features selected from the cuttlefish and genetic algorithms were used with different classifiers. The implementation was applied to two datasets: the Pima Indian diabetes dataset and the hospital Frankfurt diabetes dataset; generally, these datasets are asymmetry, but some of the features in these datasets are close to symmetry. The results show that the cuttlefish algorithm has better accuracy rates, particularly when the number of instances in the dataset increases.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3