Cross-Correlation Fusion Graph Convolution-Based Object Tracking

Author:

Fan Liuyi1,Chen Wei2ORCID,Jiang Xiaoyan1

Affiliation:

1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

2. School of Electrical Engineering & Automation, Jiangsu Normal University, Xuzhou 221116, China

Abstract

Most popular graph attention networks treat pixels of a feature map as individual nodes, which makes the feature embedding extracted by the graph convolution lack the integrity of the object. Moreover, matching between a template graph and a search graph using only part-level information usually causes tracking errors, especially in occlusion and similarity situations. To address these problems, we propose a novel end-to-end graph attention tracking framework that has high symmetry, combining traditional cross-correlation operations directly. By utilizing cross-correlation operations, we effectively compensate for the dispersion of graph nodes and enhance the representation of features. Additionally, our graph attention fusion model performs both part-to-part matching and global matching, allowing for more accurate information embedding in the template and search regions. Furthermore, we optimize the information embedding between the template and search branches to achieve better single-object tracking results, particularly in occlusion and similarity scenarios. The flexibility of graph nodes and the comprehensiveness of information embedding have brought significant performance improvements in our framework. Extensive experiments on three challenging public datasets (LaSOT, GOT-10k, and VOT2016) show that our tracker outperforms other state-of-the-art trackers.

Funder

National Natural Science Foundation of China (NSFC), Essential projects

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applied Analysis of Differences by Cross-Correlation Functions;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3