Applying an Extended β-ϕ-Geraghty Contraction for Solving Coupled Ordinary Differential Equations

Author:

Hammad Hasanen12ORCID,Abodayeh Kamaleldin3ORCID,Shatanawi Wasfi345ORCID

Affiliation:

1. Department of Mathematics, Unaizah College of Sciences and Arts, Qassim University, Buraydah 52571, Saudi Arabia

2. Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt

3. Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

4. Department of Medical Research, China Medical University, Taichung 40402, Taiwan

5. Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan

Abstract

In this paper, we introduce a new class of mappings called “generalized β-ϕ-Geraghty contraction-type mappings”. We use our new class to formulate and prove some coupled fixed points in the setting of partially ordered metric spaces. Our results generalize and unite several findings known in the literature. We also provide some examples to support and illustrate our theoretical results. Furthermore, we apply our results to discuss the existence and uniqueness of a solution to a coupled ordinary differential equation as an application of our finding.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference29 articles.

1. Sur une classe d’equations fonctionnelles;Fredholm;Acta Math.,1903

2. A note on the existence of positive solution of Fredholm integral equations;Rus;Fixed Point Theory,2004

3. Numerical treatment of fixed point applied to the nonlinear Fredholm integral equation;Berenguer;Fixed Point Theory Appl.,2009

4. Analytical solution for differential and nonlinear integral equations via Fϖe-Suzuki contractions in modified ϖe-metric-like spaces;Hammad;J. Funct. Spaces,2021

5. Ameer, E., Aydi, H., Arshad, M., and la Sen, M.D. (2020). Hybrid Ćirić type graphic (Υ,Λ)-contraction mappings with applications to electric circuit and fractional differential equations. Symmetry, 12.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3