Electro-Optical Characteristics of Quasi-Homogeneous Cell in Twisted Nematic Mode

Author:

Yamaguchi Rumiko1ORCID,Sakamoto Yoshiki1

Affiliation:

1. Electrical and Electronic Engineering Course, Graduate School of Engineering Science, Akita University, Akita 010-8502, Japan

Abstract

A liquid crystal (LC) director distribution was numerically analyzed in 90-degree twisted nematic (TN) LC cells with a symmetric and an asymmetric azimuthal anchoring strength of the alignment substrate and the influence of anchoring strength on the electro-optical property of the TN cell was evaluated. The twist angle decreased with decreasing azimuthal anchoring strength and the LC orientation changed to a homogeneous orientation with the twist angle of 0 degrees in the LC cell with asymmetric azimuthal anchoring strength, specifically with the strong anchoring substrate and the weak anchoring substrate below a critical strength. The asymmetric anchoring LC cell was fabricated by using a poly (vinyl cinnamate) alignment substrate as the weak anchoring surface and a polyimide alignment substrate as the strong anchoring surface. The LC cell performed the dark–bright–dark switching of the transmittance in the crossed polarizers, since the homogeneous LC orientation changed to the TN orientation again with increasing the applied voltage. Therefore, it was experimentally confirmed that LC molecules rotated at 90 degrees in the plane on the alignment surface by the electric field perpendicular to the weak anchoring substrate.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Symmetry and Liquid Crystals;Symmetry;2023-03-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3