Knockout of Rlim Results in a Sex Ratio Shift toward Males but Superovulation Cannot Compensate for the Reduced Litter Size

Author:

Peng Jingfeng123ORCID,Hou Yunfei123,Wu Shici123,Li Zicong1234,Wu Zhenfang1234

Affiliation:

1. National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China

2. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China

3. Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China

4. Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China

Abstract

Technologies that can preselect offspring gender hold great promise for improving farm animal productivity and preventing human sex-related hereditary diseases. The maternal Rlim allele is required for imprinted X-chromosome inactivation, which is essential for the normal development of female mouse embryos. In this study, we inactivated the maternal Rlim allele in embryos by crossing a male transgenic mouse line carrying an X-linked CMV-Cre transgene with a female line carrying a loxP-flanked Rlim gene. Knockout of the maternal Rlim gene in embryos resulted in a male-biased sex ratio skew in the offspring. However, it also reduced litter size, and this effect was not compensated for by superovulation in the mother mice. In addition, we showed that siRNA-mediated knockdown of Rlim in mouse embryos leads to the birth of male-only progenies. This study provides a new promising method for male-biased sex selection, which may help to improve the productivity in livestock and prevent sex-associated hereditary diseases in humans.

Funder

The Department of Agriculture and Rural Affairs of Guangdong Province, China

The Department of Science and Technology of Guangdong Province, China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3