Evaluation of Rumen Degradation Kinetics of Low-Lignin Alfalfa ‘Hi-Gest® 360’ in Saskatchewan Canada

Author:

Damiran Daalkhaijav1ORCID,Biligetu Bill2ORCID,Lardner Herbert1ORCID

Affiliation:

1. Department of Animal and Poultry Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada

2. Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada

Abstract

The objective of this study was to determine rumen degradation kinetics of new low-lignin alfalfa (Medicago sativa L.) cv. Hi-Gest®360 (HiGest) in comparison with conventional alfalfa cv. AC Grazeland (Grazeland) in monoculture and binary mixtures at different maturity stages. Two cultivars of alfalfa (HiGest, and AC Grazeland) and their binary mixtures with hybrid bromegrass (HBG; cv. AC Success), grown in 2019 at two locations (Saskatoon and Lanigan), were cut at three maturity stages of alfalfa (1 = 10% bloom; 2 = 40% bloom; and 3 = 100% bloom). Rumen degradation characteristics, including rapidly degradable fraction (S), potentially degradable fraction (D), undegradable fraction (U), degradation rate (Kd), lag time (T0), and effective degradability (ED) of each component were determined using in situ technique and were analyzed by a first-order kinetic equation described by Ørskov and McDonald with lag time. Generally, in alfalfa monoculture, S or D were decreased and U was increased without affecting Kd and T0, resulting in decreased ED fraction with increasing stage of maturity. In binary mixtures, plant maturity stages have negligible effects on rumen degradation characteristics of CP. HiGest had higher effective degradability of DM (EDDM) as well as of NDF (EDNDF) than Grazeland. In conclusion, HiGest had greater DM and NDF rumen degradation potential relative to Grazeland. HiGest and Grazeland were different in DM and CP degradation patterns, with HiGest having higher EDDM and EDCP than Grazeland.

Funder

Saskatchewan Ministry of Agriculture’s ADOPT funding

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3