The Mechanisms of BDNF Promoting the Proliferation of Porcine Follicular Granulosa Cells: Role of miR-127 and Involvement of the MAPK-ERK1/2 Pathway

Author:

Zheng Xue12,Chen Lu1,Chen Tong1ORCID,Cao Maosheng1,Zhang Boqi1,Yuan Chenfeng1,Zhao Zijiao1ORCID,Li Chunjin1,Zhou Xu1ORCID

Affiliation:

1. Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun 130062, China

2. College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China

Abstract

As a member of the neurotrophic family, brain-derived neurotrophic factor (BDNF) provides a key link in the physiological process of mammalian ovarian follicle development, in addition to its functions in the nervous system. The emphasis of this study lay in the impact of BDNF on the proliferation of porcine follicular granulosa cells (GCs) in vitro. BDNF and tyrosine kinase B (TrkB, receptor of BDNF) were detected in porcine follicular GCs. Additionally, cell viability significantly increased during the culture of porcine GCs with BDNF (100 ng/mL) in vitro. However, BDNF knockdown in GCs decreased cell viability and S-phase cells proportion—and BDNF simultaneously regulated the expression of genes linked with cell proliferation (CCND1, p21 and Bcl2) and apoptosis (Bax). Then, the results of the receptor blocking experiment showed that BDNF promoted GC proliferation via TrkB. The high-throughput sequencing showed that BDNF also regulated the expression profiles of miRNAs in GCs. The differential expression profiles were obtained by miRNA sequencing after BDNF (100 ng/mL) treatment with GCs. The sequencing results showed that, after BDNF treatment, 72 significant differentially-expressed miRNAs were detected—5 of which were related to cell process and proliferation signaling pathways confirmed by RT-PCR. Furthermore, studies showed that BDNF promoted GCs’ proliferation by increasing the expression of CCND1, downregulating miR-127 and activating the ERK1/2 signal pathway. Moreover, BDNF indirectly activated the ERK1/2 signal pathway by downregulating miR-127. In conclusion, BDNF promoted porcine GC proliferation by increasing CCND1 expression, downregulating miR-127 and stimulating the MAPK-ERK1/2 signaling cascade.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3