Evaluation of Physics-Informed Neural Network Solution Accuracy and Efficiency for Modeling Aortic Transvalvular Blood Flow

Author:

Du Toit Jacques Francois1ORCID,Laubscher Ryno1ORCID

Affiliation:

1. Department of Mechanical and Mechatronic Engineering, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa

Abstract

Physics-Informed Neural Networks (PINNs) are a new class of machine learning algorithms that are capable of accurately solving complex partial differential equations (PDEs) without training data. By introducing a new methodology for fluid simulation, PINNs provide the opportunity to address challenges that were previously intractable, such as PDE problems that are ill-posed. PINNs can also solve parameterized problems in a parallel manner, which results in favorable scaling of the associated computational cost. The full potential of the application of PINNs to solving fluid dynamics problems is still unknown, as the method is still in early development: many issues remain to be addressed, such as the numerical stiffness of the training dynamics, the shortage of methods for simulating turbulent flows and the uncertainty surrounding what model hyperparameters perform best. In this paper, we investigated the accuracy and efficiency of PINNs for modeling aortic transvalvular blood flow in the laminar and turbulent regimes, using various techniques from the literature to improve the simulation accuracy of PINNs. Almost no work has been published, to date, on solving turbulent flows using PINNs without training data, as this regime has proved difficult. This paper aims to address this gap in the literature, by providing an illustrative example of such an application. The simulation results are discussed, and compared to results from the Finite Volume Method (FVM). It is shown that PINNs can closely match the FVM solution for laminar flow, with normalized maximum velocity and normalized maximum pressure errors as low as 5.74% and 9.29%, respectively. The simulation of turbulent flow is shown to be a greater challenge, with normalized maximum velocity and normalized maximum pressure errors only as low as 41.8% and 113%, respectively.

Funder

African Conference on Computational Mechanics

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3