Land Cover Mapping with Higher Order Graph-Based Co-Occurrence Model

Author:

Zhao Wenzhi,Emery William,Bo Yanchen,Chen JiageORCID

Abstract

Deep learning has become a standard processing procedure in land cover mapping for remote sensing images. Instead of relying on hand-crafted features, deep learning algorithms, such as Convolutional Neural Networks (CNN) can automatically generate effective feature representations, in order to recognize objects with complex image patterns. However, the rich spatial information still remains unexploited, since most of the deep learning algorithms only focus on small image patches that overlook the contextual information at larger scales. To utilize these contextual information and improve the classification performance for high-resolution imagery, we propose a graph-based model in order to capture the contextual information over semantic segments of the image. First, we explore semantic segments which build on the top of deep features and obtain the initial classification result. Then, we further improve the initial classification results with a higher-order co-occurrence model by extending the existing conditional random field (HCO-CRF) algorithm. Compared to the pixel- and object-based CNN methods, the proposed model achieved better performance in terms of classification accuracy.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3