Structural and Spectral Analysis of Cereal Canopy Reflectance and Reflectance Anisotropy

Author:

Kuester TheresORCID,Spengler Daniel

Abstract

The monitoring of agricultural areas is one of the most important topics for remote sensing data analysis, especially to assist food security in the future. To improve the quality and quantify uncertainties, it is of high relevance to understand the spectral reflectivity regarding the structural and spectral properties of the canopy. The importance of understanding the influence of plant and canopy structure is well established, but, due to the difficulty of acquiring reflectance data from numerous differently structured canopies, there is still a need to study the structural and spectral dependencies affecting top-of-canopy reflectance and reflectance anisotropy. This paper presents a detailed study dealing with two fundamental issues: (1) the influence of plant and canopy architecture changes due to crop phenology on nadir acquired cereal top-of-canopy reflectance, and (2) the anisotropic reflectance of cereal top-of-canopy reflectance and its inter-annual variations as affected by varying contents of biochemical constituents and changes on canopy structure across green phenological stages between tillering and inflorescence emergence. All of the investigations are based on HySimCaR, a computer-based approach using 3D canopy models and Monte Carlo ray tracing (drat). The achieved results show that the canopy architecture significantly influences top-of-canopy reflectance and the bidirectional reflectance function (BRDF) in the VNIR (visible and near infrared), and SWIR (shortwave infrared) wavelength ranges. In summary, it can be said that the larger the fraction of the radiation reflected by the plants, the stronger is the influence of the canopy structure on the reflectance signal. A significant finding for the anisotropic reflectance is that the relative row orientation of the cereal canopies is mapped in the 3D-shape of the BRDF. Summarised, this study provides fundamental knowledge for improving the retrieval of biophysical vegetation parameters of agricultural areas for current and upcoming sensors with large FOV (field of view) with respect to the quantification of uncertainties.

Funder

Bundesministerium für Wirtschaft und Energie

Horizon 2020

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3