Analysis of the Radar Vegetation Index and Potential Improvements

Author:

Szigarski Christoph,Jagdhuber Thomas,Baur Martin,Thiel Christian,Parrens Marie,Wigneron Jean-Pierre,Piles MariaORCID,Entekhabi Dara

Abstract

The Radar Vegetation Index (RVI) is a well-established microwave metric of vegetation cover. The index utilizes measured linear scattering intensities from co- and cross-polarization and is normalized to ideally range from 0 to 1, increasing with vegetation cover. At long wavelengths (L-band) microwave scattering does not only contain information coming from vegetation scattering, but also from soil scattering (moisture & roughness) and therefore the standard formulation of RVI needs to be revised. Using global level SMAP L-band radar data, we illustrate that RVI runs up to 1.2, due to the pre-factor in the standard formulation not being adjusted to the scattering mechanisms at these low frequencies. Improvements on the RVI are subsequently proposed to obtain a normalized value range, to remove soil scattering influences as well as to mask out regions with dominant soil scattering at L-band (sparse or no vegetation cover). Two purely vegetation-based RVIs (called RVII and RVIII), are obtained by subtracting a forward modeled, attenuated soil scattering contribution from the measured backscattering intensities. Active and passive microwave information is used jointly to obtain the scattering contribution of the soil, using a physics-based multi-sensor approach; simulations from a particle model for polarimetric vegetation backscattering are utilized to calculate vegetation-based RVI-values without any soil scattering contribution. Results show that, due to the pre-factor in the standard formulation of RVI the index runs up to 1.2, atypical for an index normally ranging between zero and one. Correlation analysis between the improved radar vegetation indices (standard RVI and the indices with potential improvements RVII and RVIII) are used to evaluate the degree of independence of the indices from surface roughness and soil moisture contributions. The improved indices RVII and RVIII show reduced dependence on soil roughness and soil moisture. All RVI-indices examined indicate a coupled correlation to vegetation water content (plant moisture) as well as leaf area index (plant structure) and no single dependency, as often assumed. These results might improve the use of polarimetric radar signatures for mapping global vegetation.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3