Tree Species Classification with Multi-Temporal Sentinel-2 Data

Author:

Persson Magnus,Lindberg EvaORCID,Reese Heather

Abstract

The Sentinel-2 program provides the opportunity to monitor terrestrial ecosystems with a high temporal and spectral resolution. In this study, a multi-temporal Sentinel-2 data set was used to classify common tree species over a mature forest in central Sweden. The tree species to be classified were Norway spruce (Picea abies), Scots pine (Pinus silvestris), Hybrid larch (Larix × marschlinsii), Birch (Betula sp.) and Pedunculate oak (Quercus robur). Four Sentinel-2 images from spring (7 April and 27 May), summer (9 July) and fall (19 October) of 2017 were used along with the Random Forest (RF) classifier. A variable selection approach was implemented to find fewer and uncorrelated bands resulting in the best model for tree species identification. The final model resulting in the highest overall accuracy (88.2%) came from using all bands from the four image dates. The single image that gave the most accurate classification result (80.5%) was the late spring image (27 May); the 27 May image was always included in subsequent image combinations that gave the highest overall accuracy. The five tree species were classified with a user’s accuracy ranging from 70.9% to 95.6%. Thirteen of the 40 bands were selected in a variable selection procedure and resulted in a model with only slightly lower accuracy (86.3%) than that using all bands. Among the highest ranked bands were the red edge bands 2 and 3 as well as the narrow NIR (near-infrared) band 8a, all from the 27 May image, and SWIR (short-wave infrared) bands from all four image dates. This study shows that the red-edge bands and SWIR bands from Sentinel-2 are of importance, and confirms that spring and/or fall images capturing phenological differences between the species are most useful to tree species classification.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3