Low Power Blockchained E-Vote Platform for University Environment

Author:

Chaabane Faten,Ktari JalelORCID,Frikha TarekORCID,Hamam HabibORCID

Abstract

With the onset of the COVID-19 pandemic and the succession of its waves, the transmission of this disease and the number of deaths caused by it have been increasing. Despite the various vaccines, the COVID-19 virus is still contagious and dangerous for affected people. One of the remedies to this is precaution, and particularly social distancing. In the same vein, this paper proposes a remote voting system, which has to be secure, anonymous, irreversible, accessible, and simple to use. It therefore allows voters to have the possibility to vote for their candidate without having to perform the operation on site. This system will be used for university elections and particularly for student elections. We propose a platform based on a decentralized system. This system will use two blockchains communicating with each other: the public Ethereum blockchain and the private Quorum blockchain. The private blockchain will be institution-specific. All these blockchains send the necessary data to the public blockchain which manages different data related to the universities and the ministry. This system enables using encrypted data with the SHA-256 algorithm to have both security and information security. Motivated by the high energy consumption of blockchain and by the performance improvements in low-power, a test is performed on a low-power embedded platform Raspberry PI4 showing the possibility to use the Blockchain with limited resources.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. STM32 miner : A lightweight blockchain mining system;2023 IEEE International Conference on Design, Test and Technology of Integrated Systems (DTTIS);2023-11-01

2. HealthBeat traceability platform based on blockchain technology;2023 IEEE International Conference on Design, Test and Technology of Integrated Systems (DTTIS);2023-11-01

3. Integrating blockchain and deep learning for intelligent greenhouse control and traceability;Alexandria Engineering Journal;2023-09

4. Low Power Blockchain in Industry 4.0 Case Study: Water Management in Tunisia;Journal of Signal Processing Systems;2023-07-26

5. Significance of Internet-of-Things Edge and Fog Computing in Education Sector;2023 International Conference on Smart Computing and Application (ICSCA);2023-02-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3