Analysis of Flow Field Characteristics and Pressure Pulsation in Horizontal Axis Double-Runner Francis Turbine

Author:

Yang ChunxiaORCID,Wu Jiawei,Xu Dinge,Zheng Yuan,Hu Xueyuan,Long Zhe

Abstract

Horizontal axis double-runner Francis turbines have great advantages in the development of small hydropower plants, but the arrangement of double runners aggravates the complexity of the water flow between runners, and the mutual influence of the two runners cannot be ignored. In order to explore the relationship between the performance and the internal flow field and investigate the pressure pulsation characteristics of the double-runner Francis turbine, the steady and unsteady numerical analysis of the full flow channel of a prototype turbine was carried out based on the Realizable k-epsilon model and the polyhedral mesh method. The results show that the relationship between the average efficiency of the two runners and the flow difference between the runners is negatively correlated. As the flow rate difference between the runners on both sides increases, the average efficiency of the runners decreases. The draft tube flow of a horizontal-axis turbine has a profound effect on the flow field characteristics in the runner. When the working conditions change, the turning and converging timing of the mainstream at the outlet of the two runners will change. The movement of the mainstream promotes the change in location of the dead water zone. The existence of the vortex zone makes the pressure distribution at the outlet of the runner uneven, which is an important reason for the asymmetry of the flow in the runner. The analysis of pressure pulsation and its frequency spectrum shows that when the working conditions change, the low-frequency, strong pressure pulsation area on the surface of the guide vane will regularly migrate between the two runners, while the high-frequency pressure pulsation that occurs in the bladeless zone will dissipate in the runner. The doubling of the blade frequency on the pressure surface and back surface of the blades gradually attenuates with the increase of frequency. The pressure pulsation attenuation on the surface of the high-position blade conforms to the linear law, and the attenuation of the pressure pulsation on the surface of the low-position blade conforms to the exponential law. The research in this paper provides a certain reference value for revealing the flow field mechanism and pressure pulsation characteristics of the double-runner Francis turbine.

Funder

National Key Research and Development Project

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference38 articles.

1. Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review

2. Utility of CFD in the design and performance analysis of hydraulic turbines — A review

3. Brief analysis of technical characteristics and application prospects of horizontal double runner francis hydro-generator units;Ding;Des. Hydropower Stn.,2017

4. For a large flow rate change double-runner Francis turbine;Robert;Mech. Electr. Tech. Hydropower Stn.,1996

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3