Transformer-Based Multi-Modal Data Fusion Method for COPD Classification and Physiological and Biochemical Indicators Identification

Author:

Xie Weidong1ORCID,Fang Yushan1,Yang Guicheng1,Yu Kun2,Li Wei13

Affiliation:

1. School of Computer Science and Engineering, Northeastern University, Hunnan District, Shenyang 110169, China

2. College of Medicine and Bioinformation Engineering, Northeastern University, Hunnan District, Shenyang 110169, China

3. Key Laboratory of Intelligent Computing in Medical Image (MIIC), Hunnan District, Shenyang 110169, China

Abstract

As the number of modalities in biomedical data continues to increase, the significance of multi-modal data becomes evident in capturing complex relationships between biological processes, thereby complementing disease classification. However, the current multi-modal fusion methods for biomedical data require more effective exploitation of intra- and inter-modal interactions, and the application of powerful fusion methods to biomedical data is relatively rare. In this paper, we propose a novel multi-modal data fusion method that addresses these limitations. Our proposed method utilizes a graph neural network and a 3D convolutional network to identify intra-modal relationships. By doing so, we can extract meaningful features from each modality, preserving crucial information. To fuse information from different modalities, we employ the Low-rank Multi-modal Fusion method, which effectively integrates multiple modalities while reducing noise and redundancy. Additionally, our method incorporates the Cross-modal Transformer to automatically learn relationships between different modalities, facilitating enhanced information exchange and representation. We validate the effectiveness of our proposed method using lung CT imaging data and physiological and biochemical data obtained from patients diagnosed with Chronic Obstructive Pulmonary Disease (COPD). Our method demonstrates superior performance compared to various fusion methods and their variants in terms of disease classification accuracy.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Liaoning Province

National Frontiers Science Center for Industrial Intelligence and Systems Optimization

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3