Regulation of Endosomal Trafficking by Rab7 and Its Effectors in Neurons: Clues from Charcot–Marie–Tooth 2B Disease

Author:

Mulligan Ryan J.12ORCID,Winckler Bettina1

Affiliation:

1. Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA

2. Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22903, USA

Abstract

Intracellular endosomal trafficking controls the balance between protein degradation and synthesis, i.e., proteostasis, but also many of the cellular signaling pathways that emanate from activated growth factor receptors after endocytosis. Endosomal trafficking, sorting, and motility are coordinated by the activity of small GTPases, including Rab proteins, whose function as molecular switches direct activity at endosomal membranes through effector proteins. Rab7 is particularly important in the coordination of the degradative functions of the pathway. Rab7 effectors control endosomal maturation and the properties of late endosomal and lysosomal compartments, such as coordination of recycling, motility, and fusion with downstream compartments. The spatiotemporal regulation of endosomal receptor trafficking is particularly challenging in neurons because of their enormous size, their distinct intracellular domains with unique requirements (dendrites vs. axons), and their long lifespans as postmitotic, differentiated cells. In Charcot–Marie–Tooth 2B disease (CMT2B), familial missense mutations in Rab7 cause alterations in GTPase cycling and trafficking, leading to an ulcero-mutilating peripheral neuropathy. The prevailing hypothesis to account for CMT2B pathologies is that CMT2B-associated Rab7 alleles alter endocytic trafficking of the neurotrophin NGF and its receptor TrkA and, thereby, disrupt normal trophic signaling in the peripheral nervous system, but other Rab7-dependent pathways are also impacted. Here, using TrkA as a prototypical endocytic cargo, we review physiologic Rab7 effector interactions and control in neurons. Since neurons are among the largest cells in the body, we place particular emphasis on the temporal and spatial regulation of endosomal sorting and trafficking in neuronal processes. We further discuss the current findings in CMT2B mutant Rab7 models, the impact of mutations on effector interactions or balance, and how this dysregulation may confer disease.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Reference146 articles.

1. Molecular genetics of charcot-marie-tooth disease: From genes to genomes;Azzedine;Mol. Syndromol.,2012

2. The genetics of Charcot-Marie-Tooth disease: Current trends and future implications for diagnosis and management;Hoyle;Appl. Clin. Genet.,2015

3. Mechanisms of disease: A molecular genetic update on hereditary axonal neuropathies;Vance;Nat. Clin. Pract. Neurol.,2006

4. The clinical features of hereditary motor and sensory neuropathy types I and II;Harding;Brain,1980

5. Charcot-Marie-Tooth disease: A clinico-genetic confrontation;Barisic;Ann. Hum. Genet.,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3