New Insight into the Degradation of Sunscreen Agents in Water Treatment Using UV-Driven Advanced Oxidation Processes

Author:

Simetić Tajana1ORCID,Nikić Jasmina1ORCID,Kuč Marija1,Tamindžija Dragana1ORCID,Tubić Aleksandra1ORCID,Agbaba Jasmina1,Molnar Jazić Jelena1ORCID

Affiliation:

1. University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia

Abstract

This study evaluates, for the first time, the effects of UV/PMS and UV/H2O2/PMS processes on the degradation of sunscreen agents in synthetic and natural water matrices and compares their effectiveness with the more conventional UV/H2O2. Investigations were conducted using a mixture of organic UV filters containing 4-methylbenzylidene camphor (4-MBC) and 2-ethylhexyl-4-methoxycinnamate. Among the investigated UV-driven AOPs, UV/PMS/H2O2 was the most effective in synthetic water, while in natural water, the highest degradation rate was observed during the degradation of EHMC by UV/PMS. The degradation of UV filters in the UV/PMS system was promoted by sulfate radical (68% of the degradation), with hydroxyl radical contributing approximately 32%, while both radical species contributed approximately equally to the degradation in the UV/H2O2/PMS system. The Vibrio fischeri assay showed an increase in inhibition (up to 70%) at specific stages of UV/H2O2 treatment when applied to natural water, which further decreased to 30%, along with an increase in UV fluence and progressive degradation. The Pseudomonas putida test recorded minor toxicity (<15%) after treatments. Magnetic biochar utilized in conjunction with UV-driven AOPs exhibited superior performance in eliminating residual contaminants, providing an efficient and sustainable approach to mitigate sunscreen agents in water treatment.

Funder

Ministry of Science, Technological Development and Innovation of the Republic of Serbia

European Union

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3