Research and Practice on Implementing Segmented Production Technology of Horizontal Well during Extra-High Water Cut Stage with Bottom Water Reservoir

Author:

Zhang Dong1,Li Yanlai1,Zhang Zongchao1,Li Fenghui1,Liu Hongjie1

Affiliation:

1. Tianjin Branch of CNOOC Ltd., Tianjin 300459, China

Abstract

Bohai X oilfield has reached the extra-high water cut stage of more than 95%, dominated by the bottom water reservoir. The oilfield mainly adopts horizontal-well exploitation, with the characteristics of high difficulty and low success rate for well water plugging. To solve the above problem, the segmented production technology of horizontal wells was developed to guide oilfield applications and tap their potential. In the segmented design stage, the horizontal section is objectively segmented by drilling condition analysis, optimally based on drilling through interlayers or permeability discrepancy formation, simultaneously combined with the numerical simulation method. When implementing measures, annulus chemical packer materials are squeezed between segments to effectively inhibit the fluid flow between the open hole and the sand-packing screen pipe. Moreover, the packers are used to seal between segments to effectively restrain the flow between the screen and the central tube, achieving the establishment of compartments. In the production process, the valve switch on the central tube can be independently controlled by a remotely adjustable method to achieve optimal production. This segmented production technology was successfully tested for the first time in Bohai oilfield. Up to now, a total of six compartment measures have been implemented, remarkably decreasing water cut and increasing oil production for horizontal wells in the bottom water reservoir. This method does not require water testing, and the optimal production section can be chosen through segmented independent production, greatly improving the success rate of water-plugging measures for horizontal wells. This technology opens up a new mode for the efficient development of horizontal wells in bottom water reservoirs and is planned to be widely promoted and applied in similar oilfields.

Funder

14th Five-Year Plan of the major Science and Technology Project at CNOOC Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3