Unveiling the Superiority of Innovative Carbonated Self-Nanoemulsifying Drug Delivery Systems in Improving the Stability of Acid-Labile Drugs: Atorvastatin as a Model Drug

Author:

Sherif Abdelrahman Y.1ORCID,Ibrahim Mohamed A.1ORCID

Affiliation:

1. Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Atorvastatin (AT) is widely prescribed by physicians during the treatment of hyperlipidemia. The self-nanoemulsifying drug delivery system (SNEDDS) is used to overcome its low drug solubility and bioavailability. However, the presence of free fatty acids in SNEDDS formulation resulted in remarkable AT degradation. This study explores innovative carbonated SNEDDS to enhance the stability of AT within SNEDDS formulation. Various types of SNEDDS formulations were prepared and evaluated. In vitro dissolution was performed to examine the ability of SNEDDS formulation to enhance AT dissolution. The solidified SNEDDS formation was prepared using Syloid adsorbent (AT-SF6). In addition, sodium bicarbonate was loaded within the best formulation at various concentrations to prepare carbonated SNEDDS (AT-CF6). Kinetics of drug degradation were studied over 45 days to assess AT stability in SNEDDS formulations. It was found that the SNEDDS formulation was able to enhance the dissolution of AT by about 1.5-fold compared with the pure drug formulation. AT-SF6 did not reduce the degradation rate of the drug compared with AT-F6. However, AT-CF6 formulations showed that increasing the concentration of incorporated sodium bicarbonate significantly reduced the degradation rate of AT. It was found that sodium bicarbonate in AT-CF6 significantly reduced the degradation rate of AT (0.00019) six-fold compared with AT-F6 (0.00115). The obtained results show that carbonated SNEDDS is a promising approach to enhance the stability of acid-labile drugs and their pharmaceutical application.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Reference62 articles.

1. Reactive impurities in excipients: Profiling, identification and mitigation of drug–excipient incompatibility;Wu;Aaps Pharmscitech,2011

2. Interactions and incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: A comprehensive review;Bharate;J. Excip. Food Chem.,2016

3. The stability factor: Importance in formulation development;Krishnamurthy;Curr. Pharm. Biotechnol.,2002

4. Oral drug delivery platforms for biomedical applications;Ouyang;Mater. Today,2023

5. Lipid nanoparticles: A challenging approach for oral delivery of BCS Class-II drugs;Poovi;Future J. Pharm. Sci.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3