Multi-Criteria Optimization of a Laboratory Top-Lit Updraft Gasifier in Order to Reduce Greenhouse Gases and Particulate Matter Emissions

Author:

Chiriță Alexandru-Polifron1ORCID,Pavel Ioan1,Rădoi Radu-Iulian1ORCID,Matache Gabriela1,Șovăială Gheorghe1,Popescu Ana-Maria Carla1

Affiliation:

1. National Institute of Research & Development for Optoelectronics/INOE 2000, Subsidiary Hydraulics and Pneumatics Research Institute/IHP, Cutitul de Argint 14, 040558 Bucharest, Romania

Abstract

Air pollution from combustion processes is harming human health and the environment. To mitigate this, one needs to adopt cleaner energy production methods, in particular, to optimize combustion systems in order to minimize pollutants and increase efficiency. Flue gas analysis and particulate matter (PM) monitoring, starting from the prototype phase, is crucial to minimize and regulate pollutant emissions. This article analyses the emissions of pollutants and particulate matter from a combustion test gasifier working on the Top-Lit Updraft (TLUD) principle in order to optimize functionality and reduce exhaust emissions. Three experiments were performed in which the primary (gasification) air flow rate (GA) was kept constant at 25 L/min, and the secondary (combustion) air flow rate (CA) was adjusted to obtain a CA/GA ratio of 2 (50 L/min), 3 (75 L/min), and 4 (100 L/min) respectively. Based on a multi-criterial analysis, the optimal CA/GA ratio for TLUD combustion is 3, offering a well-rounded performance in output temperatures, PM and greenhouse gases (GHG) emissions, and efficiency, while the CA/GA ratio of 4 has good PM and GHG emissions performance but lower efficiency, and the CA/GA ratio of 2 is the least favorable due to its poor performance in output temperatures, PM and GHG emissions.

Funder

Ministry of Research, Innovation and Digitization

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3