Multi-Objective Optimisation of Injection Moulding Process for Dashboard Using Genetic Algorithm and Type-2 Fuzzy Neural Network

Author:

Qazani Mohammad Reza Chalak1ORCID,Moayyedian Mehdi2,Amirkhizi Parisa Jourabchi3,Hedayati-Dezfooli Mohsen4,Abdalmonem Ahmed2,Alsmadi Ahmad2,Alam Furqan1ORCID

Affiliation:

1. Faculty of Computing and Information Technology, Sohar University, Sohar 311, Oman

2. College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait

3. Design Faculty, Tabriz Islamic Art University, Tabriz 5164736931, Iran

4. Department of Mechanical Engineering, College of Engineering and Technology, University of Doha for Science and Technology, Arab League St., Doha P.O. Box 24449, Qatar

Abstract

This study examines the use of injection moulding to evaluate mechanical properties in plastic products, such as shear and residual stresses. Key process variables like melt temperature, mould temperature, hold pressure duration, and pure hold duration are meticulously chosen for study. A full factorial experiment design is utilised to determine the best settings. These variables notably influence the end product’s physical and mechanical properties. Computational techniques, like the finite element method, are used to analyse behaviours based on varied input parameters. A CAD model of a dashboard part is incorporated into a finite element analysis to measure shear and residual stresses. Four specific parameters from the injection moulding process are subjected to an in-depth experimental design. It is worth noting that the injection moulding process does not incorporate a type-2 fuzzy neural network (T2FNN). However, in this particular investigation, T2FNN was employed to replicate the mechanical stress model associated with dashboard injection moulding. Its purpose was to estimate shear and residual stress levels. Additionally, the multi-objective genetic algorithm (MOGA) was utilised to extract the most optimal parameters for the injection moulding process, aiming to minimise shear and residual stress and thereby increase the resistance of the final product. The proposed model was developed and implemented using MATLAB software. A Pareto front was derived from the MOGA by employing the T2FNN within the process, identifying fourteen optimal solutions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3