Simulation of Bubble Behavior Characteristics in a Rolling Fluidized Bed with the Addition of Longitudinal Internal Members

Author:

Xu Rongsheng1,Wang Ruojin1,Wu Banghua1,Yuan Xiaopei1,Wang Dewu12,Liu Yan12,Zhang Shaofeng12

Affiliation:

1. School of Chemical Engineering, Hebei University of Technology, Tianjin 300132, China

2. National and Local Joint Laboratory of Chemical Energy Saving Process Integration and Resource Utilization, Tianjin 300130, China

Abstract

To address the effect of a ship’s rolling on the fluidization quality of fluidized beds, in this study, a simulation of a rolling fluidized bed with longitudinal internal members added (R-FBLIM) was carried out and compared with that of a rolling fluidized bed without internal members added (R-FBWIM). The transient motion, as well as the behavioral characteristics of the bubbles within the R-FBLIM, was analyzed; the variation patterns of the number of bubbles, as well as the equivalent diameter of the bubbles, were compared for different apparent gas velocities, oscillation periods, and amplitudes; and the mechanism of the action of the longitudinal internal members was investigated. The results show that the structural design of the longitudinal internal members can effectively improve the gas–solid fluidization quality of the rolling fluidized bed. The horizontal support plate and the cap hole structure can effectively break the air bubbles, the cap hole structure promotes the radial mixing of the gas–solid fluid, and the internal and outer rings of the curved surface plate roll in rows, which inhibit the aggregation behavior of the gas–solid fluid to the two sides of the oscillating planes, respectively, by cooperating with the cap hole structure. Compared with R-FBWIM, the gas–solid phase within R-FBLIM is more spatially distributed, with the number of bubbles increasing by about 2–4 times and the mean diameter decreasing by about 50–60%. The number of bubbles increases with the gas velocity but decreases with the rolling amplitude; the mean diameter decreases with the gas velocity but responds less to the rolling amplitude change.

Funder

the Natural Science Foundation of Hebei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3