A Fractional Creep Model for Deep Coal Based on Conformable Derivative Considering Thermo-Mechanical Damage

Author:

Zhang Lei1,Zhang Chunwang2,Hu Ke3ORCID,Xie Senlin4,Jia Wenhao5,Song Lei4

Affiliation:

1. College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. Center of Shanxi Engineering Research for Coal Mine Intelligent Equipment, Taiyuan University of Technology, Taiyuan 030024, China

3. Civil and Environmental Engineering Department, University of Alberta, Edmonton, AB T6G 2H5, Canada

4. School of Energy and Mining Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China

5. School of Mechanics and Civil Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China

Abstract

In deep high-geostress and high-temperature environments, understanding the creep deformation of deep coal is of great significance for effectively controlling coal deformation and improving gas control efficiency. In this paper, the Abel dashpot is defined based on the conformable derivative, and a damage variable is introduced into the conformable derivative order, thereby constructing a damaged Abel dashpot. Combining the Weibull distribution and the Drucker–Prager yield criterion, the thermo-mechanical coupling damage variable is defined, and the coupling damage variable is introduced into the damaged Abel dashpot to establish a thermo-mechanical coupling damaged Abel dashpot. Based on the traditional framework of the Burgers creep model, a three-dimensional fractional creep model of deep coal considering the influence of thermo-mechanical coupling damage is proposed. Experimental data on coal creep under different temperatures and stress conditions are utilized to validate the effectiveness and applicability of the proposed three-dimensional fractional creep model and to determine the model parameters. A comparison between experimental data and model results reveals that the creep model effectively characterizes the time-dependent deformation of coal samples under varying temperature and stress influences. Additionally, an in-depth analysis is carried out on the influence mechanism of key parameters in the creep model, particularly focusing on the effects of stress levels and temperature on creep deformation.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Shanxi Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3