Identification of Pneumocystis jirovecii with Fluorescence In-Situ Hybridization (FISH) in Patient Samples—A Proof-of-Principle

Author:

de Sousa Débora Raysa TeixeiraORCID,da Silva Neto João Ricardo,da Silva Roberto Moreira,Cruz Kátia Santana,Poppert SvenORCID,Frickmann HagenORCID,Souza João Vicente Braga

Abstract

In resource-limited settings, where pneumocystosis in immunocompromised patients is infrequently observed, cost-efficient, reliable, and sensitive approaches for the diagnostic identification of Pneumocystis jirovecii in human tissue samples are desirable. Here, an in-house fluorescence in situ hybridization assay was comparatively evaluated against Grocott’s staining as a reference standard with 30 paraffin-embedded tissue samples as well as against in-house real-time PCR with 30 respiratory secretions from immunocompromised patients with clinical suspicion of pneumocystosis. All pneumocystosis patients included in the study suffered from HIV/AIDS. Compared with Grocott’s staining as the reference standard, sensitivity of the FISH assay was 100% (13/13), specificity was 41% (7/17), and the overall concordance was 66.7% with tissue samples. With respiratory specimens, sensitivity was 83.3% (10/12), specificity was 100% (18/18), and the overall concordance was 93.3% as compared with real-time PCR. It remained unresolved to which proportions sensitivity limitations of Grocott’s staining or autofluorescence phenomena affecting the FISH assay accounted for the recorded reduced specificity with the tissue samples. The assessment confirmed Pneumocystis FISH in lung tissue as a highly sensitive screening approach; however, dissatisfying specificity in paraffin-embedded biopsies calls for confirmatory testing with other techniques in case of positive FISH screening results. In respiratory secretions, acceptable sensitivity and excellent specificity were demonstrated for the diagnostic application of the P. jirovecii-specific FISH assay.

Funder

Foundation of Research Support of Amazonas State, Coordination for the Improvement of Higher Education Personnel (CAPES), and the National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3