Strategies Shaping the Transcription of Carbohydrate-Active Enzyme Genes in Aspergillus nidulans

Author:

Gila Barnabás Cs.ORCID,Antal KárolyORCID,Birkó ZsuzsannaORCID,Keserű Judit Sz.ORCID,Pócsi István,Emri TamásORCID

Abstract

Understanding the coordinated regulation of the hundreds of carbohydrate-active enzyme (CAZyme) genes occurring in the genomes of fungi has great practical importance. We recorded genome-wide transcriptional changes of Aspergillus nidulans cultivated on glucose, lactose, or arabinogalactan, as well as under carbon-starved conditions. We determined both carbon-stress-specific changes (weak or no carbon source vs. glucose) and carbon-source-specific changes (one type of culture vs. all other cultures). Many CAZyme genes showed carbon-stress-specific and/or carbon-source-specific upregulation on arabinogalactan (138 and 62 genes, respectively). Besides galactosidase and arabinan-degrading enzyme genes, enrichment of cellulolytic, pectinolytic, mannan, and xylan-degrading enzyme genes was observed. Fewer upregulated genes, 81 and 107 carbon stress specific, and 6 and 16 carbon source specific, were found on lactose and in carbon-starved cultures, respectively. They were enriched only in galactosidase and xylosidase genes on lactose and rhamnogalacturonanase genes in both cultures. Some CAZyme genes (29 genes) showed carbon-source-specific upregulation on glucose, and they were enriched in β-1,4-glucanase genes. The behavioral ecological background of these characteristics was evaluated to comprehensively organize our knowledge on CAZyme production, which can lead to developing new strategies to produce enzymes for plant cell wall saccharification.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Reference81 articles.

1. From feast to famine; adaptation to nutrient availability in yeast;Winderickx,2003

2. Post-genomic Approaches to Dissect Carbon Starvation Responses in Aspergilli;Van Munster,2016

3. Revisiting life strategy concepts in environmental microbial ecology

4. Plant Cell Wall Deconstruction by Ascomycete Fungi

5. Regulation of fungal secondary metabolism

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3