Functional and Microbiological Responses of Iron–Carbon Galvanic Cell-Supported Autotrophic Denitrification to Organic Carbon Variation and Dissolved Oxygen Shaking

Author:

Li Jinlong1,Wang Xiaowei2,Deng Shi-Hai3ORCID,Li Zhaoxu3,Zhang Bin1,Li Desheng4

Affiliation:

1. Yatai Construction Science and Technology Consulting Institute, Beijing 100120, China

2. School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China

3. School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China

4. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

Iron–carbon galvanic-cell-supported autotrophic denitrification (IC-ADN) is a burgeoning efficient and cost-effective process for low-carbon wastewater treatment. This study revealed the influence of organic carbon (OC) and dissolved oxygen (DO) on IC-ADN in terms of functional and microbiological characteristics. The nitrogen removal efficiency increased to 91.6% and 94.7% with partial organic carbon source addition to COD/TN of 1 and 3, respectively. The results of 16S rRNA high-throughput sequencing with nirS and cbbL clone libraries showed that Thiobacillus was the predominant autotrophic denitrifying bacteria (ADB) in the micro-electrolysis-based autotrophic denitrification, which obtained nitrogen removal efficiency of 80.9% after 96 h. The ADBs shifted gradually to heterotrophic denitrifying bacteria Thauera with increasing COD/TN ratio. DO concentration of 0.8 rarely affected the denitrification efficiency and the denitrifying communities. When the DO concentration increased to 2.8 mg/L, the nitrogen removal efficiency decreased to 69.1%. These results demonstrated that autotrophic denitrification was notably affected by COD/TN and high DO concentration, which could be used to acquire optimum conditions for nitrogen removal. These results provided an in-depth understanding of the influential factors for galvanic-cell-based denitrification and helped us construct a stable and highly efficient treatment process for insufficient carbon source wastewater.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3