Spectrogram Dataset of Korean Smartphone Audio Files Forged Using the “Mix Paste” Command

Author:

Son Yeongmin1,Kwak Won Jun2,Park Jae Wan3

Affiliation:

1. Department of Digital Media, Soongsil University, 50 Sadang-ro, Dongjak-gu, Seoul 07027, Republic of Korea

2. School of Business Administration, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea

3. Global School of Media, Soongsil University, 50 Sadang-ro, Dongjak-gu, Seoul 07027, Republic of Korea

Abstract

This study focuses on the field of voice forgery detection, which is increasing in importance owing to the introduction of advanced voice editing technologies and the proliferation of smartphones. This study introduces a unique dataset that was built specifically to identify forgeries created using the “Mix Paste” technique. This editing technique can overlay audio segments from similar or different environments without creating a new timeframe, making it nearly infeasible to detect forgeries using traditional methods. The dataset consists of 4665 and 45,672 spectrogram images from 1555 original audio files and 15,224 forged audio files, respectively. The original audio was recorded using iPhone and Samsung Galaxy smartphones to ensure a realistic sampling environment. The forged files were created from these recordings and subsequently converted into spectrograms. The dataset also provided the metadata of the original voice files, offering additional context and information that could be used for analysis and detection. This dataset not only fills a gap in existing research but also provides valuable support for developing more efficient deep learning models for voice forgery detection. By addressing the “Mix Paste” technique, the dataset caters to a critical need in voice authentication and forensics, potentially contributing to enhancing security in society.

Funder

Seoul Business Agency

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3