Reptile Search Algorithm (RSA)-Based Selective Harmonic Elimination Technique in Packed E-Cell (PEC-9) Inverter

Author:

Khan Rashid AhmedORCID,Sabir BushraORCID,Sarwar AdilORCID,Liu Hwa-DongORCID,Lin Chang-HuaORCID

Abstract

The multilevel inverters (MLIs) are capable of handling large quantities of power and generating high-quality output voltages. Consequently, the size of the filters is reduced, and the circuitry is simplified. As a result, they have a diverse range of uses in the industrial sector, especially in smart grids. The input voltage boosting feature is required to utilize the MLI with renewable energy. In addition, a large number of components are required to attain higher output voltage levels, which increases the cost of the circuit and weight. A variety of MLI topologies have been identified to reduce losses, device quantity, and device ratings. The selective harmonic elimination (SHE) approaches reduce distinct lower order harmonics by computing the ideal switching angles. This research presents a nine–level Packed E–Cell (PEC–9) inverter that uses selective harmonic elimination to eliminate total harmonic distortion. In order to calculate the best switching angle, the reptile search algorithm (RSA) is implemented in this paper, a nature–inspired metaheuristic algorithm inspired by the hunting behavior of the crocodile. The hunting behavior of crocodiles is implemented in two main steps: the first is encircling, which is accomplished by belly walking or high walking, and the second is hunting, which is accomplished by hunting cooperation or hunting coordination. In this technique, nonlinear transcendental equations have been solved. The simulation was run in the MATLAB R2021b software environment. The simulation results suggest that the RSA outperforms the other metaheuristic algorithms. Furthermore, the simulation result was validated on a hardware setup using DSP–TMS320F28379D in the laboratory.

Funder

Ministry of Science and Technology, Taiwan

the National Taiwan Normal University Subsidy Policy to Enhance Academic Research Projects

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3