Moderate Hydrogen Pressures in the Hydrogenation of Alkenes Using a Reactor with Hydrogen Gas Self-Inducing Impeller

Author:

Supramono Dijan,Yoandi Ivan,Fauzi Muhammad Reza

Abstract

The non-oxygenated oil product of the pyrolysis of polypropylene cannot be used directly as an engine fuel due to its high content of alkenes. However, high pressure of hydrogen gas is commonly employed in the hydrotreatment of alkenes to produce alkanes. A semi-batch hydrogenation reaction using a hydrogen gas self-inducing impeller to internally recirculate the hydrogen gas has been implemented in the present work to provide small hydrogen gas bubbles so that the gas dispersion in the liquid phase is intensified. This technique is expected to improve the contact of hydrogen, oil, and the Ni/Al2O3 catalyst, which in turn alleviates high pressures of hydrogen gas. The hydrogenation reaction was performed at 185 °C with an impeller speed of 400 rpm. The pressure was varied from 2 to 8 bar. At the pressure of 2 bar, the main reactions are the hydrogenation of alkenes and cyclization of alkenes leading to cycloalkane formation, while at the pressures of 4, 6, and 8 bar, the main reactions are dimerization or oligomerization and hydrogenation of alkenes. The hydrogenation reaction shifts the carbon chain length in the oil towards the carbon chain length attributed to diesel fuel with more branching as the hydrogen pressure is increased. The gas inducement technique employed in the present work has succeeded in saturating almost all alkenes at moderate pressures (below 9 bar), lower than the pressures used by previous researchers, i.e., above 9 bar.

Funder

University of Indonesia

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3