Application of Non-Dominated Sorting Genetic Algorithm (NSGA-II) to Increase the Efficiency of Bakery Production: A Case Study

Author:

Babor MajharulislamORCID,Pedersen Line,Kidmose Ulla,Paquet-Durand OlivierORCID,Hitzmann BerndORCID

Abstract

Minimizing the makespan is an important research topic in manufacturing engineering because it accounts for significant production expenses. In bakery manufacturing, ovens are high-energy-consuming machines that run throughout the production time. Finding an optimal combination of makespan and oven idle time in the decisive objective space can result in substantial financial savings. This paper investigates the hybrid no-wait flow shop problems from bakeries. Production scheduling problems from multiple bakery goods manufacturing lines are optimized using Pareto-based multi-objective optimization algorithms, non-dominated sorting genetic algorithm (NSGA-II), and a random search algorithm. NSGA-II improved NSGA, leading to better convergence and spread of the solutions in the objective space, by removing computational complexity and adding elitism and diversity strategies. Instead of a single solution, a set of optimal solutions represents the trade-offs between objectives, makespan and oven idle time to improve cost-effectiveness. Computational results from actual instances show that the solutions from the algorithms significantly outperform existing schedules. The NSGA-II finds a complete set of optimal solutions for the cases, whereas the random search procedure only delivers a subset. The study shows that the application of multi-objective optimization in bakery production scheduling can reduce oven idle time from 1.7% to 26% while minimizing the makespan by up to 12%. Furthermore, by penalizing the best makespan a marginal amount, alternative optimal solutions minimize oven idle time by up to 61% compared to the actual schedule. The proposed strategy can be effective for small and medium-sized bakeries to lower production costs and reduce CO2 emissions.

Funder

European Institute of Innovation and Technology

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3