Accuracy Tests and Precision Assessment of Localizing Underground Utilities Using GPR Detection

Author:

Karsznia Krzysztof RyszardORCID,Onyszko KlaudiaORCID,Borkowska SylwiaORCID

Abstract

Applying georadar (GPR) technology for detecting underground utilities is an important element of the comprehensive assessment of the location and ground infrastructure status. These works are usually connected with the conducted investment processes or serialised inventory of underground fittings. The detection of infrastructure is also crucial in implementing the BIM technology, 3D cadastre, and planned network modernization works. GPR detection accuracy depends on the type of equipment used, the selected detection method, and external factors. The multitude of techniques used for localizing underground utilities and constantly growing accuracy demands resulting from the fact that it is often necessary to detect infrastructure under challenging conditions of dense urban development leads to the need to improve the existing technologies. The factor that motivated us to start research on assessing the precision and accuracy of ground penetrating radar detection was the need to ensure the appropriate accuracy, precision, and reliability of detecting underground utilities versus different methods and analyses. The results of the multi-variant GPR were subjected to statistical testing. Various analyses were also conducted, depending on the detection method and on the current soil parameters using a unique sensor probe. When planning detection routes, we took into account regular, established grids and tracked the trajectory of movement of the equipment using GNSS receivers (internal and external ones). Moreover, a specialist probe was used to evaluate the potential influence of the changing soil conditions on the obtained detection results. Our tests were conducted in a developed area for ten months. The results confirmed a strong correlation between the obtained accuracy and the measurement method used, while the correlation with the other factors discussed here was significantly weaker.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3D reconstruction in underground utilities;Automation in Construction;2023-12

2. Detecting Unregistered Underground Infrastructure with GPR;2023 12th International Workshop on Advanced Ground Penetrating Radar (IWAGPR);2023-07-05

3. Bibliometrics on Public Utilities Registration Research;Land;2023-05-20

4. Intensity Normalisation of GPR C-Scans;Remote Sensing;2023-02-27

5. Estimation of Handheld Ground-Penetrating Radar Antenna Position with Pendulum-Model-Based Extended Kalman Filter;Remote Sensing;2023-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3